GL Garrad Hassan

Conditions for accelerating the deployment of offshore wind power in the BSR - Seminar

27 April 2012, Wind Power in the Nordic and Baltic Region

www.gl-garradhassan.com

Contents:

- 1. Objectives & Implementation Framework
- 2. Enabling Study 1 Spatial Analysis
- 3. Enabling Study 2 Grid and Interconnection
- 4. Enabling Study 3 Regulatory Review

Project Objectives

- To support the BASREC cooperation in the formation of their strategic actions for the promotion of offshore wind power in the BSR
- To assess the required conditions for deployment of offshore wind power consistent with the EU 20-20-20 targets and other energy policy targets in the BSR
- To provide a strategic outline for the integrated economic promotion of offshore wind energy <u>at the BSR level</u>, based on evaluation of resource potential, grid integration possibilities and appropriate supporting regulatory framework

Implementation Framework

Contents: 1.

1. Objectives & Implementation Framework

2. Enabling Study 1 – Spatial Analysis

- 3. Enabling Study 2 Grid and Interconnection
- 4. Enabling Study 3 Regulatory Review

Enabling Study 1 – Spatial Analysis: Approach

- *Objective: to* guide discussion on development in the BSR, giving preliminary assessment of deployment potential and relative attractiveness of areas
- Techno-economic banding *Cost of Energy* study:
- Based on 3 main cost drivers: wind resource, water depth and distance from shore

Input	Source
Wind resource map	GLGH MC2 mesoscale model
Power production	Generic 5MW WTG, 150m diameter, 100m HH, 5MW/km ^{2,} 16.2% loss
Bathymetry	GEBCO 1-minute resolution
Dist. from shore	GIS mapping
Spatial restrictions	Helsinki Commission (HELCOM) & GLGH project database

Enabling Study 1 – Spatial Analysis: Constraints

3 Categories:

- 1. Hard Constraints (exclusion zones):
 - Wind farms in operation or construction
 - Existing physical infrastructure :
 - Chemical munitions dumping grounds
 - Water depths greater than 60m (pre-2020 assumption)
- 2. Soft Constraints (treated probabilistically – subjective!)
- 3. Constraints not considered

EconomicEnvironmental	Constraint Type	Parameter	Shipping	Fisheries	Protected Bird Areas	Other Protected Areas	
 Social 		Unit	Ship Transits Per Annum	Kilo-Tons landed per annum			
SEAs and site	Soft	Range	30 - 150	5 - 10			
specific EIAs &		Deployment Correction Factor	70%	70%	90%	20%	
consultations will be		Range	>150	>10	-	-	
required	Hard	Deployment 0% Correction Factor		0%			

Enabling Study 1 – Spatial Analysis: Results

Enabling Study 1 – Spatial Analysis: Qualifications

- Considerable additional work remains to be done!
- Social & Environmental:
 - Particular concerns regarding south-west Finland; military, summer homes, ornithological, logistical
- Ground Conditions:
 - Important cost driver not considered; rocks and variable strength substrates known problem in BSR
- Sea-ice:
 - May result in additional cost for design, manufacture and O&M access
 - Dependent on fetch, prevailing wind direction and extent of open water

Even an 80% attrition rate on areas designated as "high" or "very high" yields 40 GW potential in these areas and enough for all countries to meet NREAP offshore wind expectations

Contents:

- 1. Objectives & Implementation Framework
- 2. Enabling Study 1 Spatial Analysis
- 3. Enabling Study 2 Grid and Interconnection
- 4. Enabling Study 3 Regulatory Review

Enabling Study 2 – Grid and Interconnection: Overview

- *Objective:* identify important technical issues with integration of wind both with respect to NREAPs and spatial analysis. Particular focus on trans-national issues.
- Approach
 - Not a major, large-area wind integration and transmission study such as EWITS in the US.
 - Rather identify those issues which may be important for BSR in 2020; those already well understood from other studies and those which require further study
 - Study deals only with transmission not distribution systems.
- Structure
 - Literature review
 - Technical issues with high penetration levels
 - Impact of deployment potential on systems within the BSR
 - Review of possible connection arrangements

Enabling Study 2 – Grid and Interconnection: Literature Review

- Reports considered included:
 - Design and operation of power systems with large amounts of wind power (IEA)
 - Powering Europe: Wind energy and the electricity grid" (EWEA)
 - Energy Analysis for the Baltic Sea Region (EA Energy Analysis)
 - Offshore Grid Project (EWEA)
 - ENTSO-E "Scenario Outlook and System Adequacy Forecast" and Ten-year Development Plan
 - BASREC 'Post Kyoto' report (EA Energy Analysis)
 - European Wind Integration Study (EU)
 - Tradewind Study "Integrating Wind" (EU)
 - Offshore Wind Market Outlook in Northern Europe (Nordvind)

Enabling Study 2 – Grid and Interconnection: Technical issues

- Scope to review those issues known or anticipated to occur with high levels of variable renewable generation
- Comparison to other regions:

	Annual consumption (TWh)	Wind production (TWh)	Energy Penetration	Mean demand (MW)	Wind capacity (MW)	Capacity penetration
Nordic 2020	434	37.2	8.6%	49,490	13,507	27.3%
Baltic 2020	33	3.7	11.1%	3,820	1,566	41.0%
Poland 2020	170	15.2	9.0%	19,383	6,650	34.3%
Germany 2020	562	104.4	18.6%	64,147	45,750	71.3%
Iberia 2010	346	51.2	14.8%	39,545	24,411	61.7%
Ireland 2010	36	3.4	9.5%	4,146	1,722	41.5%

- Apart from Germany (which has strong interconnection) penetration levels are not unprecedented. Cost will be incurred but no show-stopper technical issues likely
- Transmission capacity: main issues are cost and consenting
- Report details latest industry technology on Voltage and Reactive power control; Faults and voltage depressions; frequency control; inertia; predictability and forecasting, balancing and communication

Enabling Study 2 – Grid and Interconnection: Implications for deployment potential

- Drawing from the "Post-Kyoto" report:
 - Additional transmission capacity expected to be build by 2020 appears adequate for NREAP levels of generation;
 - No obvious BSR country boundaries with further spare capacity for additional flows beyond that assumed in NREAPs
 - Therefore such additional generation either requires displacing other local generation or further interconnection transmission capacity to be constructed
- **Nordic system:** No insurmountable technical issues with absorbing the NREAP deployment levels and given substantial access to hydro, potential to go beyond these levels
- **Baltic system:** NREAP levels appear achievable without substantial technical issues. Additional deployment may however push penetration levels notably high with reinforcement for exports
- Poland: NREAP targets represent a margin of around 3 GW under those seen in Iberia
- **Germany:** Most wind capacity is in North Sea and so Baltic deployment not expected to have substantial impact on issues of system security and stability

Enabling Study 2 – Grid and Interconnection: connection options

- Considers whether offshore wind in the BSR brings opportunities for further subsea interconnections between countries.
- Options described include:
 - Offshore "hubs" for multiple wind farms to connect into with single route to shore (national boundaries should not prevent economically optimal configurations)
 - Tee-in and split connection
 - Use of hub-to-hub as interconnectors
- Applications for BSR:
 - Many sites close to shore for which standard direct connections or perhaps hubs likely to be optimum
 - Notable opportunities lie on interconnection routes:
 - For projects on such routes study on combination with interconnection is recommended

Contents:

- 1. Objectives & Implementation Framework
- 2. Enabling Study 1 Spatial Analysis
- 3. Enabling Study 2 Grid and Interconnection
- 4. Enabling Study 3 Regulatory Review

Enabling Study 3 – Regulatory Review: Current status

Wind's progress against 2020 NREAP expectations....

Notes 5 groups in the BSR:

- Denmark & Germany
- Sweden, Norway and Finland
- Poland
- Estonia, Latvia, Lithuania
- Russia

Enabling Study 3 – Regulatory Review: Comparative Analysis

- Fuel Mix: Competing fuel sources;
 - hydro a major source in Sweden, Norway, Finland and Latvia although further expansion is difficult
 - Poland and Russia access to cheap domestic fossil fuel although for former meeting 2020 RE targets is an issue. Estonia highly prized energy security through oil shale.
 - Germany, Denmark and Lithuania less blessed and with saturation of onshore in first two, offshore wind is increasingly attractive
- Electricity market structure: main considerations are market competition and trading platform options including intra-day trading
- Financial support mechanism: spectrum of options although currently differentiated support for offshore only available in Denmark and Germany
- Grid connection: issues are availability, cost allocation and processing of applications
- **Consenting process:** clarity of process, availability of information and guidance/assistance offered

Devil in the detail: framework scheduling and alignment is key **POLITICAL WILL IS VITAL**:

Enabling Study 3 – Regulatory Review: Comparative Analysis

Fuel mix and availability of alternatives	DE	DK	EE	FI	LT	LV	NO ¹	РО	RU	SE
							N/A			
Electricity market structure	DE	DK	EE ¹	FI	LT ¹	LV ¹	NO	РО	RU	SE
Financial support mechanism		DE	DK	EE	FI	LT	LV NO	D ¹ PO	RU	SE
	Onshore						20	12		
	Offshore									
		•								
Grid	DE	DK	EE	FI	LT	LV	NO ¹	РО	RU ²	SE
connection										
			1							
Consenting process	DE	DK	EE	FI	LT	LV	NO	РО	RU	SE

Renewable energy consultants

GL Garrad Hassan

Thank you!

David.williams@gl-garradhassan.com

Basrec-wind@swedishenergyagency.se

www.gl-garradhassan.com