

Aalto University School of Electrical Engineering Lighting Unit Finland

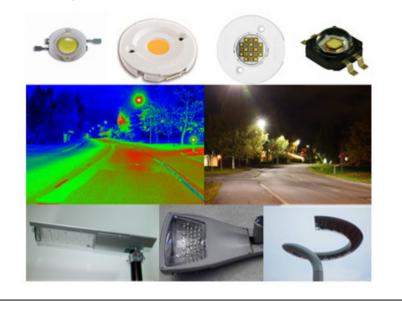
Led and Other Relevant Light Source Technologies for Street and Other Public Outdoor Lighting

Dr Marjukka Puolakka

Energy Efficient Street Lighting May 20, 2014

Outline

- Light source options
- Energy saving potential
- Scenarios for LED lighting
- Barriers and challenges for LEDs
- Mesopic photometry


A?

Aalto University School of Electrical Engineering Lighting Unit Finland

Road lighting in transition

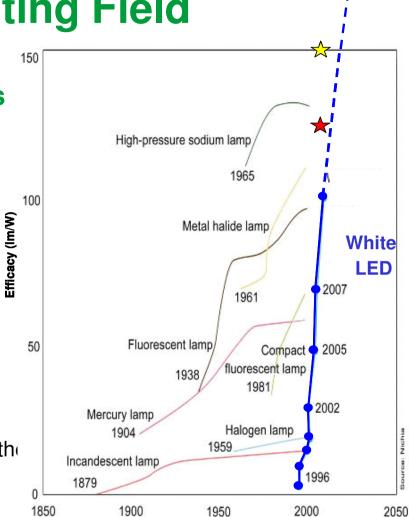
Sub study 1 - LEDs and other light source technologies

1-2013

Huge Changes in the Lighting Field

LEDs revolution in the lighting markets

- Constant development of LED light sources, e.g. luminous efficacy of white LED 2004: 30 lm/W 2014: 165 lm/W
- LED lighting markets


2007: 4.6 billion US\$ 2012: 11.4 billion US\$

European EcoDesign directive

- Phasing out of several inefficient lamp types (e.g. mercury, incandescent, T12)
- Mercury vapour lamps will be phased out from the European markets by 2015
- Restrictions also on HPS and MH lamps

165 lm/W

Outdoor Lighting

- Long installation operating times and annual operating hours
- High maintenance and lamp replacement costs
- Life cycle cost analysis
- Light source options: HID lamps and LEDs

HID Lamps

Low pressure sodium lamp, LPS

- Monochromatic yellow light
- No colour rendering
- High luminous efficacy, up to 200 lm/W
- Life-time 16 18 000 h
- Being replaced by high pressure sodium lamps

High pressure sodium lamp, HPS

- Luminous efficacy 80 150 lm/W
- Life-time 20 000 24 000 h
- Colour rendering index CIE CRI = 20-25
- Yellowish light, CCT 1900-2200 K

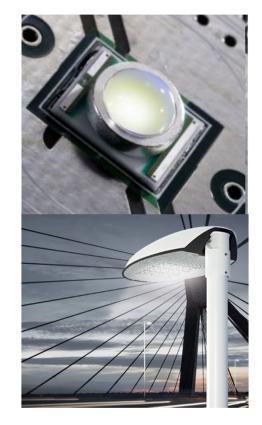
HID Lamps

Mercury vapour lamp, MV

- Luminous efficacy 45-55 lm/W
- Life-time 20 000 h
- Colour rendering index R_a ~ 45-60
- Colour temperature 3 000 4 000 K
- Being phased out in Europe

Metal halide lamp, MH

- Luminous efficacy 60 110 lm/W
- Life-time 6 000 20 000 h
- Colour temperature 2 700 5 000 K
- CIE CRI = 65-95
- Ceramic and quartz arc tubes


LEDs in sustainable lighting solutions

- High (increasing) luminous efficacy
- Long life-time (50 000 h) compared to discharge lamps (HPS < 24 000 h, MH < 20 000 h)
- White light with good colour quality
- Contain no mercury

Why LEDs?

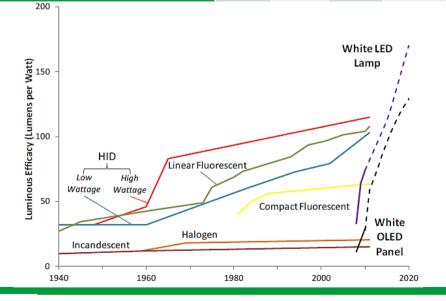
- High (increasing) luminous efficacy
- Small unit size, freedom to luminaire design
- Long life-time
- Versatile colour characteristics
- Durable
- No mercury
- Easy to control colour and intensity
- Quick starting

Light source development

Discharge lamps

	Baseline technology in 2010				Percent improvement by 2030	
Lamp types	Mean system power (W)	Lamp life (1000 h)	Mean system efficacy (Im/W)	Luminaire efficiency (%)	Mean system efficacy	Lamp life
Mercury vapour	219	20	30	65%	0%	0%
Metal halide	247	18	60	65%	15%	15%
High pressure sodium	241	28	84	65%	5%	5%
Low pressure sodium	107	25	89	65%	5%	5%

Source: DOE 2012



Light source development

Metric	2011	2013	2015	2020	Goal
Package luminous efficacy (Im/W)	97	129	162	224	266
Thermal efficiency	86%	87%	88%	90%	90%
Efficiency of driver	85%	87%	89%	92%	92%
Efficiency of fixture	86%	87%	89%	82%	92%
Resultant luminaire efficiency	63%	66%	69%	76%	76%
Luminaire luminous efficacy (Im/W)	61	85	112	170	202

LEDs

Source: DOE 2012

Aalto University

School of Electrical Engineering Lighting Unit Finland

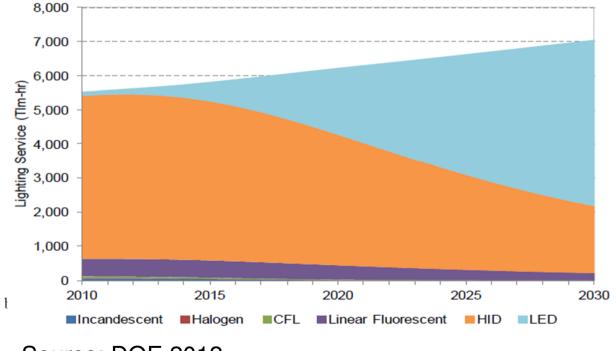
Lighting Quality: Colour of light

- White light renders object and environmental colours as natural
- Coloured light (i.e. yellow HPS lamps): poor colour rendering

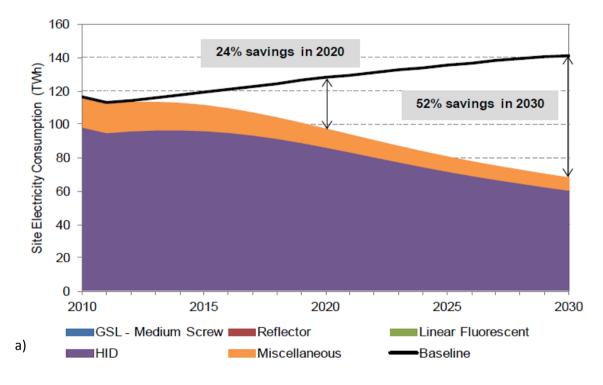
Energy Saving Potential in Outdoor Lighting

Savings potential of exterior lighting

0 %	50 %	En	ergy consump	tion 100%		
Old technology, 125 W MV lamp with mechanical ballast						
Replacement lamp, 110 W HP	15 %					
Switch to control gear for 70 W MH lamp				40 %		
New luminaire with HID* lamp			55 %			
New luminaire with HID** lamp			70 %			
New luminaire with LED***	80%	overall sa	ving possible	in future		
100% energy economy	50 %			• 0 %		


- * HPS or MH lamp
- ** HPS or MH lamp, with control system and 50% output for 2000 h
- *** With control system and 50% output for 2000 h

Source: CELMA


Lighting Service Forecast

US DOE: share of LEDs in outdoor lighting luminaire sales 87% in 2030

Source: DOE 2012

Outdoor lighting energy consumption forecast

Source: Navigant Consulting 2012

Barriers and challenges for LEDs

EC Green Paper

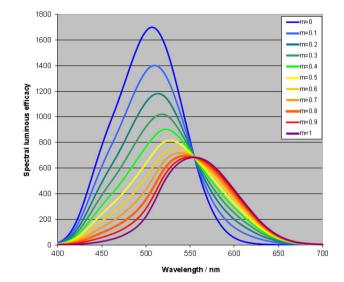
Barriers for wide deployment of SSL technology:

- risk of buying products of unproven or insufficient quality
- lack of information for consumers and professional end users
- high initial purchase costs

Reasons why cities are reluctant to use SSL widely in outdoor lighting :

- relatively high investment costs together with tight annual city budgets (even if this is generally offset by significantly lower lifetime costs)
- lack of trust quality certification schemes
- lack of standards to develop proper specifications

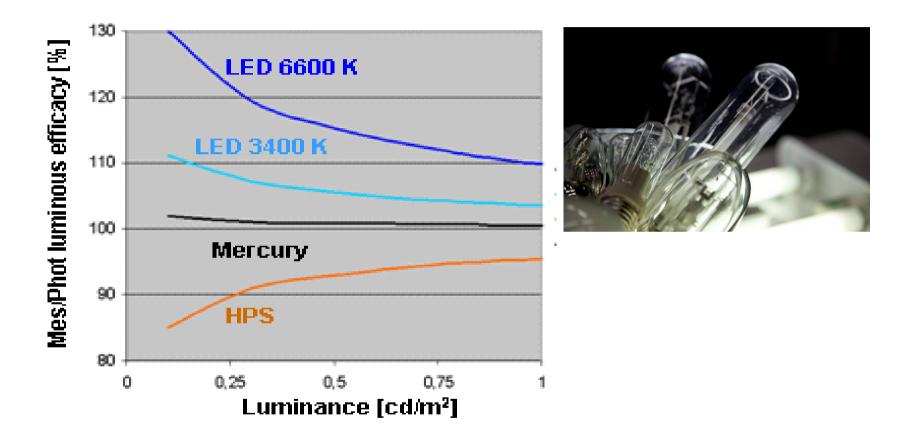
Street Lighting Life Cycle Calculations


- Long annual operating hours
- High maintenance and replacment costs
- Long performance period (25-30 years)
- Investment and operating costs (energy + maintenance)

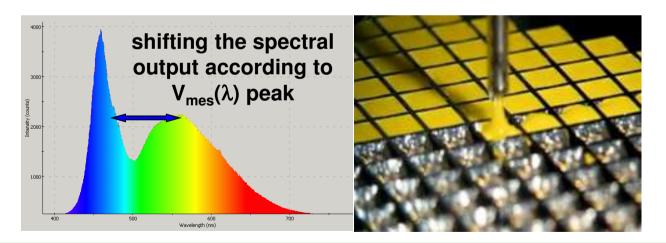
Life cycle calculations => overall economic benefit

Mesopic Photometry

- CIE 191:2010 Recommended System for Mesopic Photometry Based on Visual Performance
- CIE JTC-1: Implementation of CIE 191 Mesopic Photometry in Outdoor Lighting (2012 -)



COMMISSION INTERNATIONALE DE L'ECLAIRAGE INTERNATIONAL COMMISSION ON ILLUMINATION INTERNATIONALE BELEUCHTUNGSKOMMISSION


Mesopic/Photopic Luminous Efficacy

LED Development for Mesopic Efficiency

- CIE System of mesopic photometry: new international technical basis for light source (LED) development
- Optimisation of LED spectral output for increased luminous efficacy and visibility at low light levels

Impacts of Mesopic Photometry – **Outdoor Lighting**

- lighting design
- energy efficiency
- visibility
- road safety
- lighting quality

- choice of light sources optimised lamp spectrum
 - dimensioning values, energy etc.
 - improved lighting system efficacy
 - optimal spectrum for vision
 - enhanced visibility conditions
 - increased use of white light

Conclusions

- Outdoor lighting is under major changes
- LEDs are taking over
- Huge potential for energy savings in outdoor lighting
- Barriers and challenges for LEDs exist
- Mesopic photometry favours white light

