

STREET LIGHTING Proper project **is the key**

AGENDA

- 1. Why LED?
- 2. LED lighting basic rules
- 3. Case study: Wrong application of street lighting
- 4. How to avoid mistakes
- 5. Case study : Succesfull modernisation of street lighting
- 6. City beautification

Why LED ?

Possibility of light intensity control

Light sources		Efficacy
Bulb		10 - 22lm/W
Compact fluorescent		60 lm/W
Linear fluorescent	đ	80 - 100 lm/W
Metal halide		60 - 100 lm/W
Sodium lamp		80 - 130 lm/W
LED		120 - 200 lm/W

LED - disadvantages

- Small flux of particular diods
- High sensitivity for external teperature changes
- High junction temperature,
- Problem with white light with high "quality",
- Angle heterogeneity of colour
- Change of light colour during exploatation
- High luminance !!!

LED disadvantages – How to avoid them?

Luminairs with perfect termal, optic and electrical design supplied by responsible, trusted partner.

Efficacy- important factor

- 1. LED efficacy (130 lm/W)
- 2. LED + Driver (120 lm/ W)
- System efficacy (100 lm/W)

LED efficacy > LED&Driver efficacy > system efficacy

Characteristics of flux and temperature for LED used in street lighting

Typical Relative Light Output Characteristics over Temperature at Test Current of 700/1400 mA for LXRx-xWxx (White) and LXR0-xR00 (Royal Blue)

Figure 9. Relative light output vs. junction temperature.

Efficacy – important difference of interpreting

LED power < Whole luminaire power

LED module flux > Iuminaire flux

Class	Lun	ninance of dry surf	Dirturbing glare	Illumination of roadside	
	L av [cd/m²] min	U _o min	U ₁ min	<i>TI %</i> ª max	SR ^{2b} min
ME1	2,0	0,4	0,7	10	0,5
ME2	1,5	0,4	0,7	10	0,5
ME3a	1,0	0,4	0,7	15	0,5
ME3b	1,0	0,4	0,6	15	0,5
ME3c	1,0	0,4	0,5	15	0,5
ME4a	0,75	0,4	0,6	15	0,5
ME4b	0,75	0,4	0,5	15	0,5
ME5	0,5	0,35	0,4	15	0,5
ME6	0,3	0,35	0,4	15	With no regulations

Roads types – classification EN 13201-2

Selection of adequate light source - efficacy

Efficacy of basic types of light sources used in street lighting

Qicksilver lamps and their replacements

STREET LIGHTING Project of street lighting

After 2017...

Selection of the best type of luminaire

- Light distribution adequate to lighting needs
- High efficacy

Selection of correct geometry of lighting system

Lenght and angle of inclination of an arm

LEHT FACTORY

Pedestrian crossing lighting

Traditional

U.S. Department of Transportation

- next to illuminated crossroad

Effective, energy-efficient, ensuring the safety of users system of street lighting is a consequence of right decisions duringproject preparation.

Process of decision is supported by the legal regulations and technological and technical solutions in lighting equipment.

Maximum amount of light emitted upward by properly installed luminaire (optimum)					
Road category ULOR					
ME1 to ME6, MEW1 to MEW 6	3%				
CE0 to CE5, S1 to S6, ES, EV, A					
- 12 000 lm ≤ light source	5%				
- 8 500 lm ≤ light source< 12 000 lm	10%				
- 3 300 lm ≤ light source< 8 500 lm	15%				
- light source< 3 300 lm	20%				

White light in street lighting

LED – more advantegous spectrum - with low illumination level

SON vs LED LED – more adequarte spectrum - with low illumination level

Spectral luminous efficacy of radiation with different levels of visual adaptation

	S/P	Luminance level (fotopic) [cd/m ²]						
		0,03	0,1	0,3	1,0	3,0	10	
	0,25	0,0075	0,0640	0,2331	0,8735	2,8108	9,9095	
SON	0,65	0,0226	0,0848	0,2706	0,9431	2,9141	9,9587	
LRF	1,05	0,0309	0,1020	0,3040	1,0079	3,0120	10,0058	
	1,55	0,0394	0,1209	0,3421	1,0833	3,1276	10,0621	
LED	2,05	0,0469	0,1381	0,3772	1,1539	3,2368	10,1156	

		Photopic luminance cd m ⁻²									
	S/P	0,01	0,03	0,1	0,3	0,5	1	1,5	2	3	5
LPS ~	0,25	-75 %	-52 %	-29 %	-18 %	-14 %	-9 %	-6 %	-5 %	-2 %	0 %
	0,45	-55 %	-34 %	-21 %	-13 %	-10 %	-6 %	-4 %	-3 %	-2 %	0 %
HPS ~	0,65	-31 %	-20 %	-13 %	-8 %	-6 %	-4 %	-3 %	-2 %	-1 %	0 %
	0,85	-12 %	-8 %	-5 %	-3 %	-3 %	-2 %	-1 %	-1 %	0 %	0 %
	1,05	4 %	3 %	2 %	1 %	1 %	1 %	0 %	0 %	0 %	0 %
MH warm white ~	1,25	18 %	13 %	8 %	5 %	4 %	3 %	2 %	1 %	1 %	0 %
	1,45	32 %	22 %	15 %	9 %	7 %	5 %	3 %	3 %	1 %	0 %
	1,65	45 %	32 %	21 %	13 %	10 %	7 %	5 %	4 %	2 %	0 %
	1,85	57 %	40 %	27 %	17 %	13 %	9 %	6 %	5 %	3 %	0 %
LED cool white ~	2,05	69 %	49 %	32 %	21 %	16 %	11 %	8 %	6 %	3 %	0 %
	2,25	80 %	57 %	38 %	24 %	19 %	12 %	9 %	7 %	4 %	0 %
MH daylight ~	2,45	91 %	65 %	43 %	28 %	22 %	14 %	10 %	8 %	4 %	0 %
	2,65	101 %	73 %	49 %	31 %	24 %	16 %	12 %	9 %	5 %	0 %

 $0,005 \text{ cd/m}^2 \leq Lmes \leq 5 \text{ cd/m}^2$

STREET LIGHTING Case Study

Case Study 1– Zabki, Poland Wrong application of LED street lighting

Lampa KP002s

DANE TECHNICZNE

AC 180÷240V
0,32A (230V)
65W
≥ 91 lm/W
5 930 lm (Tj = 60°C, Ta = 25°C)
5500 ÷ 6500K
Ra > 75
asymetryczna/ owalna
130° x 110°
High Power LED (56szt. x 1W)
-30°C ÷ 40°C
10÷90%
> 50 000 godzin
3 kg
IP65

Case Study – Zabki, Poland Wrong application of LED street lighting

STREET LIGHTING

During street lighting project preparation important factors should be considered:

- Technical conditions of modernisation [energetic area]
- inventory of the existing installation [amount of luminaires, types of luminaires, measured power, distance from the road, road category – parameters]
- Photometrics the best possible luminaires adaptation
- Project of modernisation
- Technical and economic analysis
 - Power reduction programm
 - Financial engineering
 - Ecological effects

STREET LIGHTING

Technical analysis

Two available solutions:

New projects = maximum space between the lighting points, minimum

amount of luminaires

Modernisation of existing lighting points without changing

of poles distance = minimum power of all luminaires

CASE STUDY 2 - PRZYTYK

Succesfull example of street lighting modernization with use of LED luminaires

Przytyk municipality

BEFORE:

1127 luminaires

196 kW installed power

0,174 kW/ luminaire (average)

126 000 EUR/ year

CASE STUDY 2 - PRZYTYK Succesfull example of street lighting modernization with use of LED luminaires

MODERNISATION:

1000 luminaires – exchanged for LED

127 luminaires – ballast replacement for electronic with power reduction

Dimming of LED Luminaire in the night

Total CO² reduction: **558 t/year**

SAVINGS: 96 000 EUR/year (30500EUR-new cost of energy)

Power reduction: 196 kW \rightarrow 76,77 kW (40,21 kW in the night)

Payback time 4,5 years

LED disadvantages – How to avoid them?

Luminairs with perfect termal, optic and electrical design supplied by responsible, trusted partner.

STREET LIGHTING

URBANO LED

- Innovative LED street lighting luminaires by LUG
- Professional optics for motorways, roads, car parks and squares

STREET LIGHTING

Easy mounting!

Comfortable possition of installer during installation and service

Switching on and of at set hours, flux dependent of the time and abount of the cars on the road

Changable in time lighting classes M (ME) – ul. Piotrowo

	Parameters od road illumination						
Class of lighting	L av [cd/m2]	Uo	UI	TI [%]	SR		
M1		Basic lighting class					
	Δt1 – since switching on till 10:00 PM						
M2	1,5	0,40	0,70	10	0,5		
		Reduced requirements for average luminance					
M3	1,0	Δt4 – since 6:00 AM do till switching off					
M4	0,75	Δt2 – since 10:00 PM till 12:00 PM					
M5	0,50	Δt3 – since 12:00 PM till 6:00 AM					

LLOC- LUG Light Outdoor Control

Possibility of particular luminaire control or control of the group of luminaires from central terminal

URBANO LED Case Study

Type of luminaire oprawy	Average sodium light source Iuminaire 1 x 150 W	URBANO LED	
System power	170W	90W	
Flux of the light source	14.400lm	10.800 lm	
Efficiency	69%	78%	
Flux of the luminaire	9750 lm	8424 lm	
Light use rate	0,8 (7800 lm)	0,92 (7750 lm)	
Efficacy	38 lm/W	99 lm/W	
Cost of energy per one luminaire* *3500h; 0,1EUR = 1 kWh	59,5 EUR	31,5 EUR	

STREET LIGHTING CITY LED

SYSTEM OUTPUT [lm]	LUMINAIRE POWER [W]	Replacement of
5000	45	70W (90W)
6825	65	100W (120W)
10000	100	150W (176W)
9200	100	150W (176W)
15600	155	250W (275W)
14400	155	250W (275W)

ILLUMINATIONS MODENA LED

To illuminiate this object we used **MODENA LED** – in standard it's a wallwasher, but for this project we redesigned it to fit in a handrail as specified by the architect

Modern footbridge in Rzeszów, POLAND

ILLUMINATIONS MODENA LED

MODENA LED

- Decorative architectural wallwasher IP 65
- LED in one of 5 monochromatic colours: white, red, green, blue or amber
- RGB version available

ILLUMINATIONS MODENA LED

PUBLIC UTILITY APPLICATIONS

New line of Warsaw metro, Poland

INDUSTRIAL LIGHTING

LED LIGHTING other possibilities

LED LIGHTING other possibilities

Contact

Trusted partner of LUG

Valoiste Oy

Aleksis kiven katu 20 B PL 41, 33211 Tampere FINLAND

www.valoiste.fi

Embassy of the Republic of Poland

Trade and Investment Promotion Section:

Risto Rytin Tie 7 00570 HELSINKI Finland

Puh: (+358 9) 686 00 60 Fax: (+358 9) 686 00 160 <u>helsinki@trade.gov.pl</u>

Baltics

Arturas Gansauskas

LUG Export Sales Representative tel: +48 68 45 23 145 e-mail: Arturas.Gansauskas@lug.eu

Kaliningrad

Damian Woźniak Key Account Manager tel: +48 68 45 23 175 GSM: +48 502 413 393 e-mail: Damian.Wozniak@lug.eu

